

Nouvlh
1140, boulevard de Maisonneuve Ouest
Montréal, Québec
Canada H3A 1M8

# Réseau express métropolitain (REM)

PROJET REM S.E.C.

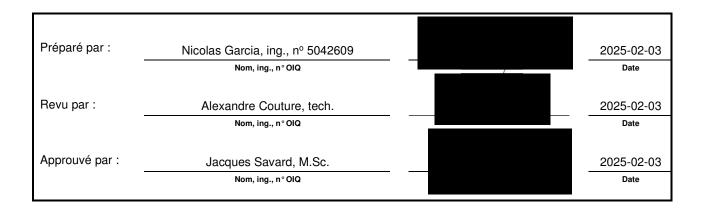
Étude acoustique de la station lle Bigras

602024-123922-80070-4EEE-0001\_02

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02

Préparé pour : PROJET REM S.E.C.

1000, place Jean-Paul-Riopelle Montréal, Québec, Canada


H2Z 2B3

Préparé par : NouvLR

1140, boulevard de Maisonneuve Ouest

Montréal, Québec, Canada

H3A 1M8



#### Index des révisions

| N° | Date       | Description                            | Préparé par | Vérifié par  | Approuvé par |
|----|------------|----------------------------------------|-------------|--------------|--------------|
| 00 | 2021-07-27 | Inclusion – SST115 A/B                 | V. Simard   | P. Choquette | J. Savard    |
| 01 | 2022-02-10 | Ajout période 16 h à 17 h              | V. Simard   | P. Choquette | J. Savard    |
| 02 | 2025-02-03 | SST115 – Ajout unités de climatisation | N. Garcia   | A. Couture   | J. Savard    |

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02

# **Table des matières**

| 1 | Intro  | duction                                                                 | 1    |
|---|--------|-------------------------------------------------------------------------|------|
|   | 1.1    | Abréviations et acronymes                                               | 1    |
|   | 1.2    | Documents de référence                                                  |      |
|   |        |                                                                         |      |
| 2 | Zone   | d'étude                                                                 | 4    |
| 3 | Critè  | res acoustiques                                                         | F    |
|   |        |                                                                         |      |
|   | 3.2    | Critère de bruit à l'extérieur                                          |      |
|   | 3.3    | Bruit ambiant existant                                                  | 8    |
|   | 3.4    | Critères sonores extérieurs                                             | 8    |
|   |        |                                                                         | . 10 |
| 4 | Statio | on Île Bigras                                                           | . 11 |
|   | 4.1    | Équipements mécaniques CVAC                                             | . 11 |
|   | 4.2    | Stationnement                                                           | . 17 |
|   | 4.3    | Sous-station électrique SST115 A/B                                      | . 18 |
| 5 | Impa   | ct global et vérification de conformité aux limites sonores applicables | . 22 |
|   | 5.1    | Bruit extérieur                                                         | . 23 |
|   | 5.2    | Bruit intérieur                                                         | . 24 |
| 6 | Isola  | tion vibro-acoustique                                                   | . 24 |
|   | 6.1    | Dispositifs antivibratoires                                             | . 25 |
|   | 6.2    | Raccordement aux équipements                                            | . 26 |
|   | 6.3    | Autres mesures de réduction des vibrations                              | . 27 |
| _ |        |                                                                         |      |

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02

| Liste des figures  Figure 1 - Position des points de mesure à proximité de la station Ile Bigras (Laval)  Figure 2 – Position des panneaux acoustiques sur la SST115 |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                                                                      |    |
| Liste des tableaux                                                                                                                                                   |    |
| Tableau 1 – Abréviations et acronymes                                                                                                                                | 1  |
| Tableau 2 – Documents de référence                                                                                                                                   | 2  |
|                                                                                                                                                                      | 6  |
| Tableau 4 – Critères sonores de la NI 98-01 (dBA)                                                                                                                    |    |
| Tableau 5 – Niveau de bruit ambiant existant (dBA)                                                                                                                   |    |
| Tableau 6 – Critères sonores retenus (dBA) - Détail                                                                                                                  |    |
| Tableau 7 – Critères sonores retenus (dBA) - Sommaire                                                                                                                |    |
| Tableau 8 – Équipements CVAC et niveaux de puissance sonore                                                                                                          |    |
| Tableau 9 – Évaluation du bruit extérieur aux points récepteurs (dBA)                                                                                                |    |
| Tableau 10 – Évaluation du bruit intérieur dans les espaces publics (dBA)                                                                                            |    |
| Tableau 11 – Silencieux à mettre en place aux équipements CVAC                                                                                                       | 15 |
| Tableau 12 – Raccordement de diffuseur/grille avec conduit flexible traité acoustiquement                                                                            | 16 |
| Tableau 13 – Configuration des stationnements                                                                                                                        |    |
| Tableau 14 - Contribution soriore du stationnement                                                                                                                   |    |
| Tableau 16 – Puissance sonore des unités de climatisation                                                                                                            |    |
| Tableau 17 – Nombre d'unités de climatisation requises au bon fonctionnement de la SST115                                                                            |    |
| Tableau 18 – Séquence de fonctionnement des unités de climatisation de la SST115                                                                                     |    |
| Tableau 19 - Contribution sonore de la SST115 A/B                                                                                                                    |    |
| Tableau 20 – Facteur d'absorption des panneaux acoustiques simulés¹                                                                                                  | 21 |
| Tableau 21 – Puissance sonore des unités de climatisation après modification                                                                                         |    |
| Tableau 22 - Contribution sonore de la SST115 A/B attendue après recommandations                                                                                     |    |
| Tableau 23 – Impact sonore extérieur global (LAeq, 1h, dBA) incluant les recommandations                                                                             | 23 |
| Tableau 24 – Évaluation du bruit intérieur dans les espaces publics (dBA)                                                                                            |    |
| Tableau 25 – Dispositifs antivibratoires recommandés                                                                                                                 |    |
| Tableau 26 – Raccords flexibles aux équipements                                                                                                                      | 26 |

Tableau 27 – Profil d'opération des UTA - station lle Bigras - 6 août 2019......31

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02

## 1 Introduction

Le projet du Réseau express métropolitain (ci-après « le REM » ou « le Projet ») est un système de trains légers sur rail qui sera implanté dans la grande région de Montréal. Long de 67 km et composé de 4 antennes, le REM permettra de relier Brossard sur la rive sud à Deux-Montagnes sur la rive nord ou Sainte-Anne-de-Bellevue dans l'ouest de l'île, en passant par le centre-ville de Montréal. Il desservira aussi l'aéroport international Montréal-Trudeau.

Le présent document rend compte des résultats de l'analyse acoustique de la source fixe composée de la station lle Bigras et du stationnement pour automobiles vis-à-vis des critères contractuels. La station lle Bigras est située sur l'antenne Deux-Montagnes, sur le territoire de la ville de Laval.



La présente version du document (version 02) vise à tenir compte des sixièmes unités de climatisation ajoutées aux bâtiments de la SST115. Les paragraphes ayant fait l'objet d'une mise à jour par rapport à la version précédente de ce document sont mis en évidence par le symbole ci-contre (voir sections 4.3 et 5.1).

### 1.1 Abréviations et acronymes

Les abréviations et acronymes utilisés dans ce document sont présentés au tableau ci-dessous.

| Tableau 1 – Abréviations et acronymes |                                                                                |  |  |  |  |  |
|---------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|--|
| Abréviations et acronymes             | Définition                                                                     |  |  |  |  |  |
| ANSI                                  | American National Standards Institute                                          |  |  |  |  |  |
| ASA                                   | American Standards Association                                                 |  |  |  |  |  |
| COND                                  | Condenseur                                                                     |  |  |  |  |  |
| CVAC                                  | Chauffage Ventilation Air Climatisé                                            |  |  |  |  |  |
| dBA                                   | Niveau sonore pondéré A                                                        |  |  |  |  |  |
| DM                                    | Antenne Deux-Montagnes                                                         |  |  |  |  |  |
| FH                                    | Filtre harmonique                                                              |  |  |  |  |  |
| Hz                                    | Hertz                                                                          |  |  |  |  |  |
| Lp                                    | Niveau de pression acoustique (réf : 20x10-6 Pa)                               |  |  |  |  |  |
| Lw                                    | Niveau de puissance acoustique (réf : 1x10 <sup>-12</sup> W)                   |  |  |  |  |  |
| MELCC                                 | Ministère de l'Environnement et de la Lutte contre les changements climatiques |  |  |  |  |  |
| MSF                                   | Maintenance and storage facility                                               |  |  |  |  |  |
| NC                                    | Noise criterion                                                                |  |  |  |  |  |
| NI 98-01                              | Note d'Instructions 98-01                                                      |  |  |  |  |  |
| РО                                    | Pompe                                                                          |  |  |  |  |  |
| Pa                                    | Pascal                                                                         |  |  |  |  |  |

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02

| Tableau 1 – Abréviations et acronymes |                                  |  |  |  |  |
|---------------------------------------|----------------------------------|--|--|--|--|
| Abréviations et acronymes             | Définition                       |  |  |  |  |
| PL                                    | Poste de livraison               |  |  |  |  |
| REM                                   | Réseau express métropolitain     |  |  |  |  |
| RTL                                   | Réseau de Transport de Longueuil |  |  |  |  |
| SST                                   | Sous-station de traction         |  |  |  |  |
| Т                                     | Transformateur                   |  |  |  |  |
| UCB                                   | Unité de climatisation           |  |  |  |  |
| UTA                                   | Unité de traitement d'air        |  |  |  |  |
| VA                                    | Ventilateur d'alimentation       |  |  |  |  |
| VCR                                   | Ventilo-convecteur               |  |  |  |  |
| VE                                    | Ventilateur d'évacuation         |  |  |  |  |
| W                                     | Watt                             |  |  |  |  |

# 1.2 Documents de référence

Le tableau ci-dessous présente la liste des documents de référence considérés pour cette étude.

| Tableau 2 – Documents de référence |                                                                                   |                                   |           |  |  |  |  |
|------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------|-----------|--|--|--|--|
| Référence                          | Titre                                                                             | Document No.                      | Édition   |  |  |  |  |
| [DR-01]                            |                                                                                   |                                   |           |  |  |  |  |
| [DR-02]                            | Traitement des plaintes sur le bruit et exigences aux entreprises qui le génèrent | NI 98-01: 2006                    | Juin 2006 |  |  |  |  |
| [DR-03]                            | Règlement ville de Laval L-12423 concernant le bruit communautaire                | L-12423                           | Déc. 2021 |  |  |  |  |
| [DR-04]                            | Modélisation acoustique – Antenne Deux-<br>Montagnes                              | 602024-100000-<br>80070-4EEE-0002 | 00        |  |  |  |  |
| [DR-05]                            | Étude d'impact sur la circulation – Station Ile-<br>Bigras                        | 602024-123920-<br>80020-4TEE-0001 | PG        |  |  |  |  |
| [DR-06]                            | Antenne Deux-Montagnes – Station Ile Bigras –<br>Plan d'intégration urbaine       | 602024-123920-<br>40060-4UD1-1000 | PI        |  |  |  |  |
| [DR-07]                            | Antenne Deux-Montagnes – Station Ile Bigras – Plan d'implantation                 | 602024-123922-<br>20010-44DE-1130 | 01        |  |  |  |  |
| [DR-08]                            | Antenne Deux-Montagnes – Station Ile Bigras –<br>Plan d'aménagement               | 602024-123922-<br>20010-44DE-3110 | 01        |  |  |  |  |
| [DR-09]                            | Antenne Deux-Montagnes – Station Ile Bigras –<br>Plans agrandis – Niveau entrée   | 602024-123922-<br>20010-44DE-3120 | 03        |  |  |  |  |

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02

| Tableau 2 – Documents de référence |                                                                                                     |                                   |         |  |  |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------|---------|--|--|--|
| Référence                          | Titre                                                                                               | Document No.                      | Édition |  |  |  |
| [DR-10]                            | Antenne Deux-Montagnes – Station Ile Bigras –<br>Plans agrandis – Niveau quai                       | 602024-123922-<br>20010-44DE-3121 | 02      |  |  |  |
| [DR-11]                            | Antenne Deux-Montagnes – Station Ile Bigras –<br>Plans agrandis – Niveau toiture                    | 602024-123922-<br>20010-44DE-3220 | 02      |  |  |  |
| [DR-12]                            | Antenne Deux-Montagnes – Station Ile Bigras –<br>Élévations extérieures                             | 602024-123922-<br>20010-44DE-4110 | 01      |  |  |  |
| [DR-13]                            | Antenne Deux-Montagnes – Station Ile Bigras –<br>Élévations extérieures agrandies – Quai 1          | 602024-123922-<br>20010-44DE-4120 | 01      |  |  |  |
| [DR-14]                            | Antenne Deux-Montagnes – Station Ile Bigras –<br>Élévations extérieures agrandies                   | 602024-123922-<br>20010-44DE-4121 | 01      |  |  |  |
| [DR-15]                            | Antenne Deux-Montagnes – Station Ile Bigras –<br>Coupes générales                                   | 602024-123922-<br>20010-44DE-4510 | 02      |  |  |  |
| [DR-16]                            | Antenne Deux-Montagnes – Station Ile Bigras –<br>Coupes longitudinales et transversales - agrandies | 602024-123922-<br>20010-44DE-4520 | 00      |  |  |  |
| [DR-17]                            | Antenne Deux-Montagnes – Station Ile Bigras –<br>Coupes longitudinales et transversales - agrandies | 602024-123922-<br>20010-44DE-4521 | 01      |  |  |  |
| [DR-18]                            | Station Ile Bigras – Plans agrandis –<br>Toilettes/conciergerie/rampe corridor                      | 602024-123922-<br>20010-44DE-6210 | 01      |  |  |  |
| [DR-19]                            | Antenne Deux-Montagnes – Station Ile Bigras –<br>Perspectives 3D extérieures                        | 602024-123922-<br>20010-44DE-9910 | 01      |  |  |  |
| [DR-20]                            | Station Ile Bigras – Plan clé                                                                       | 602024-123922-<br>20010-45DE-0003 | 00      |  |  |  |
| [DR-21]                            | Station Ile Bigras – Ventilation – Niveau accès                                                     | 602024-123922-<br>20010-45DE-1400 | 01      |  |  |  |
| [DR-22]                            | Station Ile Bigras – Ventilation – Niveau plateforme                                                | 602024-123922-<br>20010-45DE-1401 | 00      |  |  |  |
| [DR-23]                            | Station Ile Bigras – Ventilation – Tableaux des équipements                                         | 602024-123922-<br>20010-45DE-1456 | 00      |  |  |  |
| [DR-24]                            | Station Ile Bigras – Régulation automatique – Diagramme                                             | 602024-123922-<br>20010-45DE-1600 | 01      |  |  |  |
| [DR-25]                            | Station Ile Bigras – Régulation automatique – Diagramme                                             | 602024-123922-<br>20010-45DE-1601 | 00      |  |  |  |
| [DR-26]                            | Rapport de simulations CFD pour la ventilation en été aux fins de confort thermique                 | 602024-123922-<br>80020-45ER-7400 | 01      |  |  |  |
| [DR-27]                            | Antenne Deux-Montagnes – Station Ile Bigras –<br>Plomberie – Drainage sanitaire diagramme           | 602024-123922-<br>40020-46DE-1250 | 00      |  |  |  |
| [DR-28]                            | Antenne Deux-Montagnes – Station Ile Bigras –<br>Plomberie – Drainage pluvial diagramme             | 602024-123922-<br>40020-46DE-1251 | 00      |  |  |  |
| [DR-29]                            | Antenne Deux-Montagnes – Station Ile Bigras –<br>Plomberie – Tableaux des équipements               | 602024-123922-<br>40020-46DE-1255 | 00      |  |  |  |

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02

| Tableau 2 – Documents de référence |                                                                       |                                   |         |  |  |  |  |  |
|------------------------------------|-----------------------------------------------------------------------|-----------------------------------|---------|--|--|--|--|--|
| Référence                          | Titre                                                                 | Document No.                      | Édition |  |  |  |  |  |
| [DR-30]                            | Station Ile Bigras – Services Diagramme                               | 602024-123922-<br>20010-47DE-1100 | 02      |  |  |  |  |  |
| [DR-31]                            | Plan de localisation SST115A et SST115B                               | 602024-123920-<br>50030-47DA-0001 | 00      |  |  |  |  |  |
| [DR-32]                            | Plan d'aménagement et détails du système CVCA – SST115A               | 602024-123920-<br>50030-47D8-0001 | 00      |  |  |  |  |  |
| [DR-33]                            | Plan d'aménagement et détails du système CVCA – SST115A               | 602024-123920-<br>50030-47D8-0002 | 00      |  |  |  |  |  |
| [DR-34]                            | Mur de soutènement – Chemin du Tour / Dubois – DM – Coupes et Détails | 602024-124443-<br>10080-43D1-7010 | 00      |  |  |  |  |  |

Des références complémentaires utilisées pour l'étude vibro-acoustique sont données ci-dessous :

- > ASHRAE, A. (2011). ASHRAE Handbook-HVAC Applications. In *American Society of Heating, Refrigeration, and Air-Conditioning Engineers*;
- Mason Industries. (1966). Controlling vibration problems in sensitive structures, Noise and vibration problems and solutions, New York, 1966. New York, NY: Air Conditioning, Heating & Refrigeration News;
- > Les catalogues des fournisseurs des ventilateurs d'alimentation et d'évacuation.

## 2 Zone d'étude

La Figure 1 ci-dessous présente une carte de localisation de la zone d'étude autour de la station lle Bigras mettant en évidence l'implantation des bâtiments et la limite de site du projet, ainsi que les points récepteurs étant les plus critiques.

Les points récepteurs sont placés sur les limites de propriété des résidences adjacentes à la station et ont été utilisés dans l'évaluation du bruit extérieur pour vérifier la conformité vis-à-vis du critère applicable.

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02



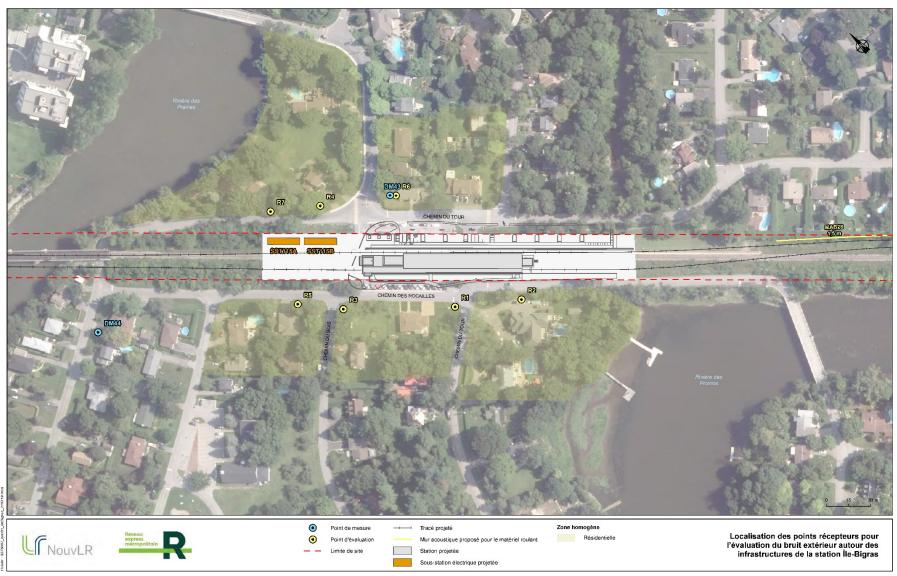



Figure 1 - Position des points de mesure à proximité de la station lle Bigras (Laval)

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02



# 3 Critères acoustiques



# 3.2 Critère de bruit à l'extérieur

#### 3.2.1 Note d'instructions 98-01 du MELCC

Le tableau ci-dessous présente les critères sonores de la Note d'instructions 98-01 révisée en juin 2006 (ci-après « NI 98-01 ») du MELCC [DR-02].

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02



Le niveau acoustique d'évaluation (L<sub>Aeq,1h</sub>) d'une source fixe sera inférieur, en tout temps, pour tout intervalle de référence d'une heure continue et en tout point de réception du bruit, au plus élevé des niveaux sonores suivants :

- > le niveau de bruit résiduel (niveau de bruit sans la contribution sonore de la source visée), ou
- > le niveau maximal permis selon le zonage et la période de la journée, tel que mentionné ci-dessous :

| Tableau 4 – Critères sonores de la NI 98-01 (dBA)                                                                                                                                                                                         |                                 |                                 |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|
| Zonage                                                                                                                                                                                                                                    | Critère de jour<br>(7 h – 19 h) | Critère de nuit<br>(19 h – 7 h) |  |  |  |  |  |
| I : Territoire destiné à des habitations unifamiliales isolées ou jumelées, à des écoles, hôpitaux ou autres établissements de services d'enseignement, de santé ou de convalescence. Terrain d'une habitation existante en zone agricole | 45                              | 40                              |  |  |  |  |  |
| II : Territoire destiné à des habitations en unités de logements multiples, des parcs de maisons mobiles, des institutions ou des campings.                                                                                               | 50                              | 45                              |  |  |  |  |  |
| III : Territoire à des usages commerciaux ou à des parcs récréatifs. 1                                                                                                                                                                    | 55                              | 50                              |  |  |  |  |  |
| IV : Territoire zoné pour fins industrielles ou agricoles. <sup>2</sup>                                                                                                                                                                   | 70                              | 70                              |  |  |  |  |  |

#### Notes:

- Le niveau de bruit prévu pour la nuit ne s'applique que dans les limites de propriété utilisés à des fins résidentielles. Dans les autres cas, le niveau maximal de bruit prévu le jour s'applique également la nuit.
- Sur le terrain d'une habitation existante en zone industrielle et établie conformément aux règlements municipaux en vigueur au moment de sa construction, les critères sont de 50 dBA la nuit et 55 dBA le jour.

La catégorie de zonage est établie en vertu des usages permis par le règlement de zonage municipal.

#### 3.2.2 Règlement de la ville de Laval

La Ville de Laval possède un règlement qui traite des nuisances par le bruit : le Règlement nº L-12423 concernant le bruit communautaire. Les paragraphes 2.1.1 et 2.1.2 précisent que « constitue une nuisance et est interdit, sous peine de l'imposition de l'amende prévue au présent règlement, l'émission d'un bruit :

- > perçu à l'extérieur, entre 21 heures et 7 heures, et qui est supérieur au niveau équivalent de bruit de 50 dBA, mesuré dans une aire d'agrément;
- > perçu à l'extérieur, entre 7 heures et 21 heures, qui est supérieur au niveau équivalent de bruit de 55 dBA, mesuré dans une aire d'agrément ».

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001 02



#### 3.3 Bruit ambiant existant

Une campagne de relevés du bruit ambiant existant a été réalisée dans le cadre du Projet et a fait l'objet d'un rapport de modélisation de l'antenne DM [DR-04].

#### 3.3.1 Identification des récepteurs sensibles

La Figure 1 illustre la position des récepteurs sensibles à proximité de la station lle Bigras. Le niveau de bruit ambiant avant-projet des points récepteurs est supposé équivalent au niveau de bruit ambiant du point de mesure avant-projet DM43.

#### 3.3.2 Bruit ambiant mesuré

Le tableau ci-dessous présente les résultats de mesures du bruit ambiant existant réalisées au point à proximité de la station lle Bigras, soit le point DM43.

| Tablea | Tableau 5 – Niveau de bruit ambiant existant (dBA) |                       |                                 |                                     |                                   |                                   |  |  |  |  |
|--------|----------------------------------------------------|-----------------------|---------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|--|--|--|--|
| Point  | Adresse                                            | L <sub>Aeq, 24h</sub> | L <sub>Aeq, 1h</sub><br>0h - 1h | L <sub>Aeq, 1h</sub> min<br>1h - 5h | L <sub>Aeq, 1h</sub><br>14h - 15h | L <sub>Aeq, 1h</sub><br>16h - 17h |  |  |  |  |
| DM43   | 18 ch. du Tour, Laval                              | 57                    | 45                              | 39                                  | 55                                | 60                                |  |  |  |  |

Pour l'étude des sources sonores constituées des systèmes de ventilation et des stationnements pour automobiles, la période de 1 h à 5 h est à distinguer. De 1 h à 5 h, aucune activité de train contenant des passagers n'est prévue dans la station. Uniquement des opérations de maintenance ou de tests ponctuelles sont planifiées. De 0 h à 1 h, les opérations du REM sont présentes (trains et stationnement en fonctionnement) tandis que les critères sonores considèrent des périodes hors des périodes de pointe. Cette période constitue donc une période critique pour le respect des critères sonores. Les périodes de 14 h à 15 h et 16 h à 17 h sont des périodes de fonctionnement maximal des systèmes de ventilation.

#### 3.4 Critères sonores extérieurs

Les informations des sections précédentes permettent de construire la synthèse présentée dans le Tableau 6. Celle-ci sera utilisée afin d'évaluer la conformité sonore aux points récepteurs adjacents au site de la station lle Bigras vis-à-vis des différentes sources de bruit.

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02



| Table | Tableau 6 – Critères sonores retenus (dBA) - Détail |        |                                 |          |          |                   |         |                                            |           |           |
|-------|-----------------------------------------------------|--------|---------------------------------|----------|----------|-------------------|---------|--------------------------------------------|-----------|-----------|
|       |                                                     |        | II 98-0<br>L <sub>Aeq, 1h</sub> |          |          | le Laval<br>12423 |         | Bruit résiduel<br>L <sub>Aeq, 1h</sub> min |           |           |
| Point | Adresse                                             | Zonage | 19h - 7h                        | 7h - 19h | 21h - 7h | 7h - 21h          | 41 - 40 | 1h - 5h                                    | 14h - 15h | 16h - 17h |
| R1    | 100 ch. Des Rocailles                               | I      | 40                              | 45       | 50       | 55                | 45      | 39                                         | 55        | 60        |
| R2    | 263-319 ch. Du Tour                                 | I      | 40                              | 45       | 50       | 55                | 45      | 39                                         | 55        | 60        |
| R3    | 697 ch. Du Bois                                     | I      | 40                              | 45       | 50       | 55                | 45      | 39                                         | 55        | 60        |
| R4    | 19 ch. Du Tour                                      | I      | 40                              | 45       | 50       | 55                | 45      | 39                                         | 55        | 60        |
| R5    | 508 ch. Du Bois                                     | I      | 40                              | 45       | 50       | 55                | 45      | 39                                         | 55        | 60        |
| R6    | 18 ch. Du Tour                                      | I      | 40                              | 45       | 50       | 55                | 45      | 39                                         | 55        | 60        |
| R7    | 19 ch. Du Tour                                      | ı      | 40                              | 45       | 50       | 55                | 45      | 39                                         | 55        | 60        |

De 1 h à 5 h et de 0 h à 1 h, la NI 98-01 est plus restrictive que le règlement de la ville de Laval. La NI 98-01 s'applique donc. De 1 h à 5 h, le critère sonore applicable aux récepteurs voisins de la station lle Bigras est le critère de la zone considérée, soit 40 dBA (zone I), car le bruit résiduel est inférieur au critère de la zone considérée. De 0 h à 1 h, le critère sonore applicable aux récepteurs voisins est le bruit résiduel mesuré, soit 45 dBA, car le bruit résiduel est supérieur au critère de la zone considérée. De 14 h à 15 h, les limites fournies par la 98-01 (bruit résiduel dominant) et la ville de Laval sont équivalentes, la limite est donc de 55 dBA. De 16 h à 17 h, le règlement n° L-12423 de la ville de Laval est le plus restrictif.

| Tableau 7 – Critères sonores retenus (dBA) - Sommaire |                       |         |         |           |           |  |  |  |  |
|-------------------------------------------------------|-----------------------|---------|---------|-----------|-----------|--|--|--|--|
| Point                                                 | Adresse               | 0h - 1h | 1h - 5h | 14h - 15h | 16h - 17h |  |  |  |  |
| R1                                                    | 100 ch. Des Rocailles | 45      | 40      | 55        | 55        |  |  |  |  |
| R2                                                    | 263-319 ch. Du Tour   | 45      | 40      | 55        | 55        |  |  |  |  |
| R3                                                    | 697 ch. Du Bois       | 45      | 40      | 55        | 55        |  |  |  |  |
| R4                                                    | 19 ch. Du Tour        | 45      | 40      | 55        | 55        |  |  |  |  |
| R5                                                    | 508 ch. Du Bois       | 45      | 40      | 55        | 55        |  |  |  |  |
| R6                                                    | 18 ch. Du Tour        | 45      | 40      | 55        | 55        |  |  |  |  |
| R7                                                    | 19 ch. Du Tour        | 45      | 40      | 55        | 55        |  |  |  |  |

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02



PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001 02



# 4 Station Île Bigras

Les équipements suivants faisant partie intégrale de la station Île Bigras ont été modélisés :

- Équipements mécaniques CVAC;
- > Stationnement pour automobiles;
- > Sous-Station Électrique 115 A/B.

# 4.1 Équipements mécaniques CVAC

Le bruit généré par les systèmes CVAC ont été évalués à partir du logiciel Trane Acoustic Program (TRANE v4.1.3)<sup>1</sup>. Ce logiciel utilise les paramètres de calcul listés ci-dessous tels que spécifiés dans le guide ASHRAE pour déterminer l'atténuation sonore produite par les différents conduits et systèmes mécaniques :

- > Dimension et géométrie des conduits de ventilation;
- Vitesse d'écoulement et bruit régénéré;
- > Fini de surface des salles émettrices et réceptrices;
- > Dispersion géométrique (distance de la source au récepteur).

Dans certains cas, la distance entre les récepteurs et le projet est supérieure à 500 pi. D'après le guide ASHRAE, au-delà de 500 pi de distance, les paramètres tels que le vent et l'absorption atmosphérique doivent être pris en compte dans le calcul de propagation sonore afin d'obtenir une valeur précise. La norme ISO 9613-2 est en mesure de considérer ces facteurs. Toutefois, si l'on considère l'ensemble des paramètres standards tel que considéré par la norme ISO 9613 (absorption du sol, absorption atmosphérique, effet d'écrans, etc.), cette norme a pour effet de réduire le niveau sonore calculé aux points récepteur à ces distances par rapport à un calcul de dispersion géométrique. Vu la résultante généralement conservatrice de l'approche géométrique, il est jugé acceptable (pour fins de simplification) que les paramètres énoncés précédemment ne sont pas pris en compte via le logiciel TAP.

Les plans de ventilation sont reproduits à l'intérieur de ce programme et, compte tenu des puissances sonores par bande d'octaves données dans la section suivante, les niveaux de pression sonores intérieurs et extérieurs sont déduits. Les résultats des calculs intérieurs et extérieurs sont donnés à la section 5 du rapport.

La liste complète et positionnement des équipements du système CVAC et leurs caractéristiques (incluant les puissances acoustiques) ont été obtenus à partir des informations contenues dans les diagrammes et plans mécaniques [DR-20] à [DR-26]. La propagation du bruit à travers les équipements mécaniques CVAC et les conduits de ventilation est modélisée à partir du logiciel TRANE v4.1.3 afin d'obtenir le niveau sonore dans les espaces intérieurs et extérieurs.

Les paragraphes suivants présentent l'inventaire des équipements mécaniques CVAC puis les solutions de réduction sonore mise en œuvre à la station lle Bigras en vue de se conformer aux exigences techniques du Projet.

<sup>&</sup>lt;sup>1</sup> <a href="https://www.trane.com/commercial/north-america/us/en/products-systems/design-and-analysis-tools/analysis-tools/trane-acoustics-program.html">https://www.trane.com/commercial/north-america/us/en/products-systems/design-and-analysis-tools/analysis-tools/trane-acoustics-program.html</a>

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02



# 4.1.1 Inventaire des équipements

Le tableau ci-dessous présente la liste des équipements mécaniques CVAC sélectionnés et leur niveau de puissance sonore associé.

| £                            | Burnelin  | Niveau de puissance sonore¹ (dB) |        |        |        |       |       |       |  |  |
|------------------------------|-----------|----------------------------------|--------|--------|--------|-------|-------|-------|--|--|
| Équipement                   | Branche   | 63 Hz                            | 125 Hz | 250 Hz | 500 Hz | 1 kHz | 2 kHz | 4 kHz |  |  |
| UTA-01 à UTA-03 <sup>2</sup> | Admission | 87                               | 99     | 84     | 78     | 87    | 78    | 72    |  |  |
| 01A-01 a 01A-03 -            | Décharge  | 90                               | 94     | 84     | 85     | 91    | 84    | 78    |  |  |
| UTA-01 à UTA-03 <sup>3</sup> | Admission | 89                               | 84     | 70     | 78     | 82    | 76    | 70    |  |  |
| 01A-01 a 01A-03 °            | Décharge  | 85                               | 86     | 67     | 67     | 80    | 71    | 72    |  |  |
| VCR-01                       | Caisson   | 58                               | 60     | 58     | 50     | 47    | 43    | 41    |  |  |
| COND-VCR-01                  | Admission | 67                               | 61     | 58     | 57     | 54    | 49    | 43    |  |  |
| VCR-02                       | Caisson   | 71                               | 72     | 63     | 58     | 58    | 53    | 52    |  |  |
| COND-VCR-02                  | Admission | 67                               | 61     | 58     | 57     | 54    | 49    | 43    |  |  |
| VCR-03                       | Caisson   | 71                               | 71     | 63     | 58     | 58    | 53    | 52    |  |  |
| COND-VCR-03                  | Admission | 67                               | 61     | 58     | 57     | 54    | 49    | 43    |  |  |
| VCR-04                       | Caisson   | 71                               | 71     | 63     | 58     | 58    | 53    | 52    |  |  |
| COND-VCR-04                  | Admission | 67                               | 61     | 58     | 57     | 54    | 49    | 43    |  |  |
| VA 04                        | Admission | 85                               | 85     | 89     | 82     | 79    | 76    | 73    |  |  |
| VA-01                        | Caisson   | 85                               | 84     | 80     | 72     | 66    | 56    | 48    |  |  |
| VA 00                        | Admission | 83                               | 80     | 80     | 79     | 73    | 69    | 66    |  |  |
| VA-02                        | Caisson   | 83                               | 79     | 71     | 68     | 60    | 49    | 41    |  |  |
| VA 00                        | Admission | 83                               | 80     | 80     | 79     | 73    | 69    | 66    |  |  |
| VA-03                        | Caisson   | 83                               | 79     | 71     | 68     | 60    | 49    | 41    |  |  |
| VA 04                        | Admission | 85                               | 85     | 89     | 82     | 79    | 76    | 73    |  |  |
| VA-04                        | Caisson   | 85                               | 84     | 80     | 72     | 66    | 56    | 48    |  |  |
| \/A 05                       | Admission | 95                               | 95     | 89     | 83     | 82    | 79    | 75    |  |  |
| VA-05                        | Caisson   | 95                               | 94     | 80     | 73     | 69    | 59    | 50    |  |  |
| VA 00                        | Admission | 81                               | 85     | 80     | 82     | 71    | 66    | 64    |  |  |
| VA-06                        | Caisson   | 85                               | 85     | 89     | 82     | 79    | 76    | 73    |  |  |
| VE 04                        | Admission | 85                               | 85     | 88     | 82     | 78    | 75    | 72    |  |  |
| VE-01                        | Caisson   | 88                               | 86     | 84     | 76     | 70    | 60    | 54    |  |  |
| VE 00                        | Admission | 79                               | 81     | 85     | 87     | 76    | 75    | 73    |  |  |
| VE-02                        | Caisson   | 82                               | 82     | 81     | 81     | 68    | 60    | 55    |  |  |

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02



| Tableau 8 – Équipements CVAC et niveaux de puissance sonore |           |                                  |        |        |        |       |       |       |  |
|-------------------------------------------------------------|-----------|----------------------------------|--------|--------|--------|-------|-------|-------|--|
| Éguipement                                                  | Branche   | Niveau de puissance sonore¹ (dB) |        |        |        |       |       |       |  |
| Equipement                                                  | branche   | 63 Hz                            | 125 Hz | 250 Hz | 500 Hz | 1 kHz | 2 kHz | 4 kHz |  |
| VE-03                                                       | Admission | 79                               | 81     | 85     | 87     | 76    | 75    | 73    |  |
| VE-03                                                       | Caisson   | 82                               | 82     | 81     | 81     | 68    | 60    | 55    |  |
| VE-04                                                       | Admission | 85                               | 85     | 88     | 82     | 78    | 75    | 72    |  |
| VE-04                                                       | Caisson   | 88                               | 86     | 84     | 76     | 70    | 60    | 54    |  |
| VE-05                                                       | Admission | 94                               | 94     | 88     | 82     | 81    | 78    | 74    |  |
| VE-05                                                       | Caisson   | 97                               | 95     | 84     | 76     | 73    | 63    | 56    |  |
| VE-06                                                       | Admission | 64                               | 64     | 57     | 39     | 37    | 33    | 32    |  |
| VE-07                                                       | Admission | 57                               | 54     | 41     | 33     | 26    | 20    | 20    |  |

#### Notes:

- <sup>1</sup> Réf.: 1x10<sup>-12</sup> W;
- <sup>2</sup> Ce niveau de puissance des UTA à 22 000 CFM par unité (sans silencieux);
- <sup>3</sup> Ce niveau de puissance des UTA à 10 000 CFM par unité (sans silencieux).

Pour les besoins de l'évaluation du bruit, lorsque le niveau de puissance sonore à la décharge des ventilateurs d'alimentation (VA) et d'évacuation (VE) n'est pas disponible, celui-ci est assumé égal au niveau de puissance à l'admission. Lorsque le niveau de puissance sonore de caisson n'est pas disponible, un bonus de 10 dB est ajouté à la puissance disponible à l'admission ou la décharge du même équipement.

Le dimensionnement des mesures de mitigation est directement lié au niveau d'émission sonore des équipements CVAC sélectionnés. Tout changement dans le tableau des équipements, spécifiquement si les niveaux de puissance sont supérieurs à ceux énoncés dans le tableau ci-dessus, même dans une seule bande d'octaves, nécessitera des ajustements dans les mesures de mitigation proposées. Les niveaux sonores des équipements ne doivent pas excéder ceux indiqués, considérant les conditions d'installation et toute tolérance des manufacturiers.

#### 4.1.2 Résultats sonores sans mesures d'atténuation

Des calculs ont été menés sous les hypothèses suivantes :

- Aucun silencieux n'est intégré aux conduits de ventilation excepté ceux spécifiques aux UTA;
- > Aucune autre recommandation n'est prise en compte excepté les traitements acoustiques déjà prévus pour respecter les critères d'intelligibilité dans la station.

Les sous-sections suivantes présentent les niveaux sonores obtenus à l'extérieur puis à l'intérieur de la station.

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001 02



#### 4.1.2.1 Bruit extérieur

Le tableau ci-dessous donne les résultats sonores issus des systèmes de ventilation, incluant les UTA et leur silencieux, aux points récepteurs à proximité de la station.

| Tableau 9 – Évaluation du bruit extérieur aux points récepteurs (dBA) |     |     |     |     |     |     |     |
|-----------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|
| Source                                                                | R1  | R2  | R3  | R4  | R5  | R6  | R7  |
| Station Ile Bigras (CVAC) <sup>1</sup>                                | 61  | 62  | 53  | 51  | 50  | 51  | 51  |
| Limite sonore                                                         | 40  | 40  | 40  | 40  | 40  | 40  | 40  |
| Conformité                                                            | Non |

Note: 1 Fonctionnement des UTA à 22 000 CFM.

À la vue du tableau ci-dessus, les critères de niveaux sonores donnés à la section 3 ne sont pas respectés. Les mesures d'atténuation s'appliqueront donc sur les niveaux sonores extérieurs.

#### 4.1.2.2 Bruit intérieur

Le tableau ci-dessous donne les résultats sonores issus des systèmes de ventilation, incluant les UTA et leur silencieux, dans les espaces publics de la station.

| Tableau 10 – Évaluation du bruit intérieur dans les espaces publics (dBA) |                                              |    |     |  |  |  |  |
|---------------------------------------------------------------------------|----------------------------------------------|----|-----|--|--|--|--|
| Espace                                                                    | L <sub>Aeq-20h</sub> Critère CVAC Conformité |    |     |  |  |  |  |
| Quais 00-201/00-2021                                                      | 79                                           | 63 | Non |  |  |  |  |
| Passage RC-103 <sup>1</sup> 74 65 Non                                     |                                              |    |     |  |  |  |  |

Note: 1 Fonctionnement des UTA à 22 000 CFM.

À la vue du tableau ci-dessus, les critères de niveaux sonores décrits à la section 3 ne sont pas respectés. Les sections suivantes présentent les mesures d'atténuation mises en place pour atteindre la conformité sonore dans les espaces publics. Les résultats sonores après l'application des mesures d'atténuation sont présentés à la section 5.

#### 4.1.3 Silencieux recommandés

Afin de respecter les critères de niveaux sonores décrits à la section 3, un certain nombre de silencieux sont requis dans certains conduits de ventilation. Les caractéristiques dimensionnelles de ces silencieux sont évaluées à partir des plans mécaniques de ventilation [DR-20] à [DR-26]. Les pertes par insertion des silencieux sont déduites des modèles proposés par Vibro-Acoustics, et sont validées par la modélisation de la propagation du bruit à l'aide du logiciel TRANE v4.1.3.

Indépendamment du modèle, les silencieux doivent posséder au minimum les pertes par insertion dynamique présentées au tableau suivant afin de respecter les critères sonores intérieurs et extérieurs.

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02



| Tableau 11 – | Tableau 11 – Silencieux à mettre en place aux équipements CVAC |       |       |           |          |         |          |          |       |
|--------------|----------------------------------------------------------------|-------|-------|-----------|----------|---------|----------|----------|-------|
|              |                                                                |       | Po    | ertes par | insertio | n dynam | ique mir | nimum (d | В)    |
| Équipement   | Branche                                                        | Tag   | 63 Hz | 125 Hz    | 250 Hz   | 500 Hz  | 1 kHz    | 2 kHz    | 4 kHz |
| VA-01        | Admission                                                      | SI-01 | 7     | 11        | 17       | 18      | 21       | 15       | 15    |
| VE-01        | Décharge                                                       | SI-02 | 8     | 14        | 24       | 27      | 34       | 25       | 20    |
| VA-02        | Admission                                                      | SI-03 | 7     | 11        | 17       | 18      | 21       | 15       | 15    |
| VE-02        | Décharge                                                       | SI-04 | 8     | 14        | 24       | 27      | 34       | 25       | 20    |
| VA-03        | Admission                                                      | SI-05 | 7     | 11        | 17       | 18      | 21       | 15       | 15    |
| VE-03        | Décharge                                                       | SI-06 | 8     | 14        | 24       | 27      | 34       | 25       | 20    |
| VE-04        | Décharge                                                       | SI-07 | 8     | 14        | 24       | 27      | 34       | 25       | 20    |
| VA-04        | Admission                                                      | SI-08 | 7     | 11        | 17       | 18      | 21       | 15       | 15    |
| UTA-01 à 03  | Décharge                                                       | SI-09 | 6     | 11        | 19       | 22      | 26       | 20       | 16    |
| UTA-01       | Prise d'air neuf                                               | SI-10 | 11    | 13        | 21       | 23      | 28       | 27       | 20    |
| UTA-02       | Prise d'air neuf                                               | SI-11 | 11    | 13        | 21       | 23      | 28       | 27       | 20    |
| UTA-03       | Prise d'air neuf                                               | SI-12 | 11    | 13        | 21       | 23      | 28       | 27       | 20    |
| VA-05        | Prise d'air neuf                                               | SI-13 | 5     | 11        | 17       | 19      | 19       | 16       | 14    |
| VA-06        | Prise d'air neuf                                               | SI-14 | 9     | 10        | 13       | 13      | 18       | 19       | 17    |
| VE-05        | Décharge                                                       | SI-15 | 4     | 8         | 14       | 17      | 19       | 15       | 13    |
| VA-05        | Prise d'air neuf                                               | SI-16 | 5     | 11        | 17       | 19      | 19       | 16       | 14    |

Les silencieux doivent être positionnés au début du conduit<sup>2</sup>, juste après l'équipement référé, et avant toute jonction, afin de s'assurer que tous les espaces desservis bénéficient bien de l'atténuation sonore requise. Cela permet aussi de limiter l'effet du bruit régénéré par le silencieux dans ces espaces.

#### 4.1.4 Vitesse d'air dans les gaines

Pour minimiser le bruit issu de l'écoulement aérodynamique de l'air, certaines précautions devront être mises en œuvre, notamment en limitant la vitesse de l'air dans les gaines. Ainsi, le dimensionnement des gaines de ventilation devra être suffisant de sorte que les vitesses d'approche de l'air suivantes (en ppm : pied par minute) soient respectées :

Pour les conduites principales reliées aux ventilateurs, les vitesses maximales devraient être de l'ordre de 1 375 ppm à l'alimentation et 1 675 ppm au retour. Toutefois, si un revêtement acoustique interne était présent, les vitesses tolérées pourraient être augmentées à 3 000 et 3 575 ppm respectivement pour l'alimentation et le retour;

<sup>&</sup>lt;sup>2</sup> Il faut garder une distance minimale par rapport à tout élément perturbateur de l'écoulement pour minimiser les pertes de charge (ventilateur, silencieux, etc.). Idéalement, la distance minimale doit être de 3 fois le diamètre du conduit.

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02



- Pour les gaines secondaires du réseau alimentant des grilles et/ou diffuseurs (considérant que les gaines ne seront pas revêtues d'isolant acoustique interne), les vitesses d'approche admissibles sont de 850 ppm à l'alimentation et 1 000 ppm au retour;
- Aux grilles et diffuseurs, les vitesses d'approche admissibles sont de 725 ppm à l'alimentation et 875 ppm au retour (à moins que le manufacturier de l'élément terminus indique un critère NC d'au plus NC 45 au débit d'opération).

Dans le cas spécifique des UTA, le débit de ventilation est modulé selon la charge thermique de la journée. Cette modulation a été considérée dans l'évaluation du bruit extérieur et intérieur des prochaines sections. Le détail de cette modulation est disponible à l'Annexe B de ce document.

#### 4.1.5 Sélection diffuseurs/grilles et raccordements

Les diffuseurs et les grilles de retour peuvent générer du bruit causé par l'écoulement de l'air au travers de ces éléments terminaux. Certains manufacturiers fournissent le niveau de bruit produit par l'écoulement de l'air de leurs diffuseurs et/ou grilles de retour en fonction du débit d'air. En général, ces niveaux sont indiqués en termes d'indice NC. Lors de la sélection et du dimensionnement de ces éléments terminaux, dans le cas des bureaux uniquement, le critère NC indiqué devra être d'au plus NC 45.

Le raccordement des gaines aux diffuseurs/grilles à l'aide de conduit flexible devra être aligné avec un minimum de déviation, sans désaxer le conduit. S'il est nécessaire d'ajouter un coude, le rayon de courbure ne devra pas être inférieur au diamètre du conduit.

Également, pour les raccordements indiqués au tableau ci-dessous, il sera nécessaire de prévoir un conduit flexible traité acoustiquement (tel que Simpleflex RAG, Flexmaster TLM ou TLB ou équivalent).

| Tableau 12 – Raccordement de diffuseur/grille avec conduit flexible traité acoustiquement |                                                       |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|--|
| Équipement                                                                                | quipement Branche Localisation Longueur minimale (mm) |  |  |  |  |  |  |
| VCR-01                                                                                    | Décharge Diffuseur au Bureau RC-107 3000              |  |  |  |  |  |  |

#### 4.1.6 Autres recommandations

#### Traitement acoustique - Bureau

Afin de respecter le critère de niveau sonore (non contractuel) dans le bureau (RC-107), nous recommandons d'isoler le ventilo-convecteur noté VCR-01 du reste de la pièce à l'aide d'un plafond acoustique. Nous recommandons de mettre en place un plafond constitué de laine minérale, de barrière acoustique (couche de néoprène) en plus de la tuile acoustique de qualité NRC 0.85.

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001 02



#### 4.2 Stationnement

Les stationnements sont modélisés à l'aide d'un modèle tiré de l'étude Parking Area Noise (URL : http://www.laerm.ch/dokumente/Parking\_Area\_Noise.pdf). Ce modèle requiert l'identification du nombre de cases de stationnement, du nombre de mouvements à chaque case et du nombre de véhicules accédant à chaque case par heure.

#### 4.2.1 Stationnement incitatif et dépose-minute

Le stationnement est uniquement constitué d'un stationnement incitatif (pas de dépose-minute) [DR-07]. Sont considérées 39 cases qui ne tiennent pas compte des taxis collectifs, voitures électriques et motos. N'ayant pas de données sur l'achalandage attendu au futur stationnement du REM [DR-05], les hypothèses présentées au tableau 13 sont posées :

| Tableau 13 – Configuration des stationnements |           |                |                           |         |           |                 |  |
|-----------------------------------------------|-----------|----------------|---------------------------|---------|-----------|-----------------|--|
| Élément                                       | Nombre de | Nombre de      | ombre de Nombre de véhice |         |           | iles / case / h |  |
| Element                                       | cases     | dép.¹ par case | 0h - 1h                   | 1h - 5h | 14h - 15h | 16h – 17h       |  |
| Stationnement incitatif                       | 39        | 1              | 0,1                       | 0,1     | 0,3       | 0,3             |  |

Note: 1 Un déplacement correspond à une arrivée ou un départ d'une place.

#### 4.2.2 Résultats aux points récepteurs

Le niveau sonore est évalué aux points récepteurs sensibles (figure 1). De cette manière, la contribution sonore du stationnement peut être ajoutée aux autres sources fixes du site tel que présenté à la section 5.

Le tableau ci-dessous présente les niveaux de bruit attribuables aux mouvements dans le stationnement.

| Table | Tableau 14 – Contribution sonore du stationnement |         |                           |           |          |  |  |  |  |  |
|-------|---------------------------------------------------|---------|---------------------------|-----------|----------|--|--|--|--|--|
| oint  | Adresse                                           |         | L <sub>Aeq,1h</sub> (dBA) |           |          |  |  |  |  |  |
| P     |                                                   | 0h - 1h | 1h - 5h                   | 14h - 15h | 16h -17h |  |  |  |  |  |
| R1    | 100 ch. Des Rocailles, Laval                      | 9       | 9                         | 14        | 14       |  |  |  |  |  |
| R2    | 263-319 ch. Du Tour, Laval                        | 12      | 12                        | 17        | 17       |  |  |  |  |  |
| R3    | 696-650 ch. Du Bois, Laval                        | 6       | 6                         | 11        | 11       |  |  |  |  |  |
| R4    | 19 ch. Du Tour, Laval                             | 22      | 22                        | 27        | 27       |  |  |  |  |  |
| R5    | 508 ch. Du Bois, Laval                            | 7       | 7                         | 12        | 12       |  |  |  |  |  |
| R6    | 18 ch. Du Tour, Laval                             | 28      | 28                        | 33        | 33       |  |  |  |  |  |
| R7    | 19 ch. Du Tour, Laval                             | 21      | 21                        | 25        | 25       |  |  |  |  |  |

Les résultats du tableau 14 démontrent que la contribution sonore provenant du stationnement ne dépasse pas les critères sonores retenus. Il n'y a donc aucun correctif recommandé pour l'usage du stationnement.

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001 02



# 4.3 Sous-station électrique SST115 A/B

Une source sonore ponctuelle supplémentaire se situe dans le secteur de la station Île Bigras : la sousstation de traction SST115 A/B.

Le niveau sonore au récepteur est calculé en effectuant la propagation sonore d'un point source sur une demi-sphère (dispersion géométrique). Cette méthode de calcul est conservatrice et a pour objectif d'identifier les secteurs demandant potentiellement une atténuation. Si cette méthode « simple » présente un niveau sonore dépassant les exigences techniques, une simulation complète des atténuations ainsi que les modélisations plus détaillées (absorption du sol et de l'air, impact topographique, etc.) sont dédiées aux secteurs en dépassement lors de l'étude acoustique sous SoundPLAN.

#### 4.3.1 Méthode de calcul et hypothèses

Le niveau sonore au récepteur est calculé en effectuant la propagation sonore d'un point source à l'aide du logiciel SoundPLAN qui implémente la méthodologie de dispersion fournie dans la norme ISO 9613³. Les paramètres acoustiques et environnementaux utilisés pour le calcul sont résumés dans le tableau 15 cidessous.

| Tableau 15 – Configuration de la simulation SoundPLAN |                    |     |       |  |  |  |
|-------------------------------------------------------|--------------------|-----|-------|--|--|--|
| Paramètre                                             | Paramètre Valeurs  |     | Unité |  |  |  |
| Température                                           | 10                 | ∞   |       |  |  |  |
| Humidité relative                                     | 70,0 %             |     |       |  |  |  |
| Absorption acoustique des bâtiments                   | 0,211              |     | -     |  |  |  |
|                                                       | Pavé et béton      | 0,0 |       |  |  |  |
| Facteur de sol (G)                                    | Mixte              | 0,4 | -     |  |  |  |
|                                                       | Gazon et boisé 0,6 |     |       |  |  |  |
| Nombre de réflexion                                   | éflexion 10        |     |       |  |  |  |

Note: 1 Interprété par une perte de réflexion de 1 dB.

Le bruit généré par la sous-station SST115 est principalement attribué aux unités de climatisation situées à l'extérieur de la sous-station. Le bruit provenant des équipements situés à l'intérieur de ces salles n'est pas pris en compte dans le calcul car leur niveau sonore est faible comparativement au niveau sonore des unités de climatisation. Des unités d'une capacité de 6 tonnes (W72AC) ayant une puissance acoustique de 92 dBA et des unités de 2 tonnes (W24LB) d'une puissance acoustique de 85 dBA seront installées sur le bâtiment. Les spectres de puissance sonore utilisés sont résumés dans le tableau 16. La position et la répartition des équipements sur le bâtiment sont données dans le plan de ventilation de la sous-station [DR-32] et [DR-33].

<sup>&</sup>lt;sup>3</sup> Norme ISO 9613-2:1996 : Acoustique – Atténuation du son lors de sa propagation à l'air libre – Partie 2: Méthode générale de calcul.

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02



| Tableau 16 – Puissance sonore des unités de climatisation |                                  |       |       |        |        |        |       |       |       |       |
|-----------------------------------------------------------|----------------------------------|-------|-------|--------|--------|--------|-------|-------|-------|-------|
| É Capacité                                                | Niveau de puissance sonore (dBA) |       |       |        |        |        |       |       |       |       |
| Équipement                                                | (tonnes)                         | Total | 63 Hz | 125 Hz | 250 Hz | 500 Hz | 1 kHz | 2 kHz | 4 kHz | 8 kHz |
| Bard W24LB                                                | 2                                | 85    | 73    | 72     | 79     | 76     | 79    | 76    | 71    | 65    |
| Bard W72AC                                                | 6                                | 92    | 80    | 79     | 87     | 84     | 86    | 84    | 79    | 73    |



Les deux bâtiments (SST115-A et SST115-B) sont chacun équipés de 5 unités de ventilation extérieures d'une capacité de 6 tonnes et d'une unité de ventilation extérieure d'une capacité de 2 tonnes. Le nombre d'unités requises durant chaque heure a fait l'objet d'une analyse thermique permettant de spécifier le nombre d'unités requises en fonction de la période de la journée (tel que présenté au tableau 17). Les résultats de l'analyse thermique sont fournis à l'annexe A.



| Tableau 17 – Nom | Tableau 17 – Nombre d'unités de climatisation requises au bon fonctionnement de la SST115 |                                                    |  |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|--|--|--|
| Période          |                                                                                           | Nombre d'unités de climatisation (UC) par bâtiment |  |  |  |  |  |
| 0h - 1h          | 0h00 à 1h00                                                                               | 3                                                  |  |  |  |  |  |
| 1h - 5h          | 1h00 à 1h45                                                                               | 3                                                  |  |  |  |  |  |
| 111 - 311        | 1h45 à 5h00                                                                               | 2                                                  |  |  |  |  |  |
| 14h - 15h        | 14h00 à 15h00                                                                             | 4                                                  |  |  |  |  |  |
| 16h – 17h        | 16h00 à 17h00                                                                             | 6                                                  |  |  |  |  |  |

Spécifiquement, pour un nombre d'unités de climatisation donné au tableau 17 la séquence de mise en marche et d'arrêt fournie au tableau 18 permet de minimiser la propagation sonore vers les résidences avoisinantes.



| Tableau 18 | Tableau 18 – Séquence de fonctionnement des unités de climatisation de la SST115 |                        |        |        |        |        |  |  |  |  |
|------------|----------------------------------------------------------------------------------|------------------------|--------|--------|--------|--------|--|--|--|--|
| Bâtiment   | Unité de                                                                         | Mode de fonctionnement |        |        |        |        |  |  |  |  |
| Datillient | climatisation <sup>1</sup>                                                       | 6 UC                   | 5 UC   | 4 UC   | 3 UC   | 2 UC   |  |  |  |  |
|            | UC-N2A-1 - 2 To.                                                                 | Allumé                 | Allumé | Allumé | Allumé | Allumé |  |  |  |  |
|            | UC-N2A-2 - 6 To.                                                                 | Allumé                 | Allumé | Allumé | Allumé | Allumé |  |  |  |  |
| SST115-A   | UC-N2A-3 - 6 To.                                                                 | Allumé                 | Allumé | Allumé | Allumé | Éteint |  |  |  |  |
| 331113-A   | UC-N2A-4 - 6 To.                                                                 | Allumé                 | Allumé | Allumé | Éteint | Éteint |  |  |  |  |
|            | UC-N2A-5 - 6 To.                                                                 | Allumé                 | Allumé | Éteint | Éteint | Éteint |  |  |  |  |
|            | UC-N2A-6 - 6 To.                                                                 | Allumé                 | Éteint | Éteint | Éteint | Éteint |  |  |  |  |
|            | UC-N2B-1 - 2 To.                                                                 | Allumé                 | Allumé | Allumé | Allumé | Allumé |  |  |  |  |
|            | UC-N2B-2 - 6 To.                                                                 | Allumé                 | Allumé | Allumé | Allumé | Allumé |  |  |  |  |
| SST115-B   | UC-N2B-3 - 6 To.                                                                 | Allumé                 | Allumé | Allumé | Allumé | Éteint |  |  |  |  |
|            | UC-N2B-4 - 6 To.                                                                 | Allumé                 | Allumé | Allumé | Éteint | Éteint |  |  |  |  |
|            | UC-N2B-5 - 6 To.                                                                 | Allumé                 | Allumé | Éteint | Éteint | Éteint |  |  |  |  |

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02



| Tableau 18 | Tableau 18 – Séquence de fonctionnement des unités de climatisation de la SST115 |      |                        |      |      |      |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------|------|------------------------|------|------|------|--|--|--|--|--|
| Bâtiment   | Unité de<br>climatisation <sup>1</sup>                                           |      | Mode de fonctionnement |      |      |      |  |  |  |  |  |
| Datiment   |                                                                                  | 6 UC | 5 UC                   | 4 UC | 3 UC | 2 UC |  |  |  |  |  |
|            | UC-N2B-6 - 6 To. Allumé Éteint Éteint Éteint Éteint                              |      |                        |      |      |      |  |  |  |  |  |

Note: 1 Référence: Plan d'aménagement et détails du système CVCA de la SST [DR-32] et [DR-33]

#### 4.3.2 Évaluation sonore

Le tableau 19 présente les résultats des contributions sonores de la SST115 aux points récepteurs sensibles à proximité de la station.



| Tableau 1 | Tableau 19 – Contribution sonore de la SST115 A/B |         |                     |           |           |  |  |  |  |  |  |
|-----------|---------------------------------------------------|---------|---------------------|-----------|-----------|--|--|--|--|--|--|
| Point     | Adresse                                           |         | L <sub>Aeq,1h</sub> |           |           |  |  |  |  |  |  |
| Foint     | Aulesse                                           | 0h - 1h | 1h - 5h             | 14h - 15h | 16h – 17h |  |  |  |  |  |  |
| R1        | 100 ch. Des Rocailles, Laval                      | 34      | 34                  | 36        | 39        |  |  |  |  |  |  |
| R2        | 263-319 ch. Du Tour, Laval                        | 31      | 31                  | 33        | 35        |  |  |  |  |  |  |
| R3        | 696-650 ch. Du Bois, Laval                        | 42      | 42                  | 44        | 45        |  |  |  |  |  |  |
| R4        | 19 ch. Du Tour, Laval                             | 52      | 51                  | 54        | 65        |  |  |  |  |  |  |
| R5        | 508 ch. Du Bois, Laval                            | 44      | 43                  | 45        | 47        |  |  |  |  |  |  |
| R6        | 18 ch. Du Tour, Laval                             | 53      | 52                  | 53        | 56        |  |  |  |  |  |  |
| R7        | 19 ch. Du Tour, Laval                             | 54      | 54                  | 55        | 57        |  |  |  |  |  |  |

Le niveau sonore produit par la SST115 dépasse les critères établis au tableau 67. Pour ces dépassements aux points R3 à R7, il ne sera pas possible d'ajouter la contribution sonore des systèmes de ventilation de la station et du stationnement. Il faut donc réduire le niveau sonore provenant de la SST115. Les recommandations permettant d'atteindre la conformité sonore sont résumées dans la prochaine section.

#### 4.3.3 Recommandations d'atténuation sonore pour la SST115

Sauf indication contraire dans la section suivante, les hypothèses formulées à la section 4 relativement aux caractéristiques sonores considérées pour les équipements et les bâtiments servent de base aux recommandations générales pour la conception des sources fixes ici à l'étude.

Afin d'atteindre la conformité sonore, les recommandations suivantes sont implémentées :



- > Ajout de panneaux acoustique sur la surface de la SST115 et sur le mur TSM adjacent;
- > Remplacement du ventilateur du radiateur des unités de climatisation;
- Installation d'une couverture acoustique sur le compresseur des unités de climatisation;
- Limitation du nombre d'unités de climatisation en fonction selon les requis thermique et le mode d'opération fournis au tableau 17 et au tableau 18;
- > Forcer l'arrêt des unités latérales (UC-N2A-6 et UC-N2B-6) en période nocturne (entre 19 h et 07 h);



> Empêcher le fonctionnement de plus de deux unités de climatisation (une unité de 2 tonnes et une unité de 6 tonnes) entre 01 h et 02 h en mode climatisation. Il est en revanche permis d'opérer les cinq unités de 6 tonnes en mode ventilation (compresseurs à l'arrêt) à toute heure de la journée.

Un matériau absorbant d'une épaisseur de 2 po est ajouté aux surfaces de la SST115 tel qu'illustré à la figure 2. De plus, un panneau absorbant de 4 po recouvre le mur TSM situé vis-à-vis la SST115.

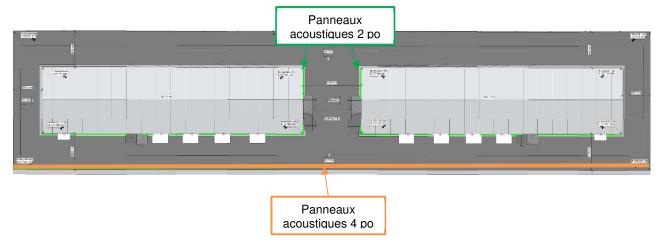



Figure 2 – Position des panneaux acoustiques sur la SST115

L'absorption utilisée lors des calculs correspond aux valeurs fournies dans le tableau 20. Chacun des panneaux choisis devrait couvrir la totalité de la hauteur disponible.

| Tableau 20 – Facteur d'absorption des panneaux acoustiques simulés <sup>1</sup> |                               |        |               |             |       |       |  |  |  |  |
|---------------------------------------------------------------------------------|-------------------------------|--------|---------------|-------------|-------|-------|--|--|--|--|
| Épaisseur du panneau                                                            |                               |        | Coefficient o | d'absorptio | า     |       |  |  |  |  |
| Epaisseur du parificau                                                          | 125 Hz                        | 250 Hz | 500 Hz        | 1 kHz       | 2 kHz | 4 kHz |  |  |  |  |
| 2 po                                                                            | 0,5                           | 0,83   | 1,00          | 0,95        | 0,97  | 0,89  |  |  |  |  |
| 4 po                                                                            | 4 po 0,71 1,00 1,00 0,98 0,89 |        |               |             |       |       |  |  |  |  |

Note: 1 Tiré du catalogue Price Industries:

https://www.priceindustries.com/content/uploads/assets/literature/catalogs/performance-data/section%20m/ap-acoustic-panel-performance-data.pdf



La puissance acoustique des unités de climatisation W72AC (capacité de 6 tonnes) et W24LB (capacité de 2 tonnes) a été réduite. Ceci a été accompli par une modification des unités de climatisation en remplaçant le ventilateur du radiateur et en installant une couverture acoustique sur le compresseur. L'ajout de ces deux modifications a permis de limiter la puissance sonore aux niveaux inscrits dans le tableau 21.



| Tableau 21 – Puissance sonore des unités de climatisation après modification |          |       |       |        |           |          |       |       |       |       |
|------------------------------------------------------------------------------|----------|-------|-------|--------|-----------|----------|-------|-------|-------|-------|
| Équipement                                                                   | Capacité |       |       | Nivea  | u de puis | ssance s | onore | (dBA) |       |       |
|                                                                              | (tonnes) | Total | 63 Hz | 125 Hz | 250 Hz    | 500 Hz   | 1 kHz | 2 kHz | 4 kHz | 8 kHz |
| Bard W72AC modifié                                                           | 6        | 89    | 65    | 83     | 84        | 82       | 81    | 78    | 74    | 67    |
| Bard W24LB modifié                                                           | 2        | 73    | 41    | 55     | 66        | 66       | 70    | 60    | 54    | 43    |

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02



Les valeurs issues du tableau 21 proviennent de mesures effectuées sur les unités de climatisation modifiées de la SST115.

L'application de l'ensemble des recommandations présentées ci-haut permet d'atteindre les niveaux sonores regroupés au tableau 22.



| Tableau 2 | Tableau 22 – Contribution sonore de la SST115 A/B attendue après recommandations |         |                     |           |         |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------------|---------|---------------------|-----------|---------|--|--|--|--|--|
| Point     | Adresse                                                                          |         | L <sub>Aeq,1h</sub> |           |         |  |  |  |  |  |
| Politi    | Auresse                                                                          | 0h - 1h | 1h - 5h             | 14h - 15h | 16h-17h |  |  |  |  |  |
| R1        | 100 ch. Des Rocailles, Laval                                                     | 25      | 22                  | 26        | 29      |  |  |  |  |  |
| R2        | 263-319 ch. Du Tour, Laval                                                       | 22      | 19                  | 24        | 26      |  |  |  |  |  |
| R3        | 696-650 ch. Du Bois, Laval                                                       | 34      | 31                  | 35        | 37      |  |  |  |  |  |
| R4        | 19 ch. Du Tour, Laval                                                            | 39      | 36                  | 41        | 54      |  |  |  |  |  |
| R5        | 508 ch. Du Bois, Laval                                                           | 35      | 32                  | 36        | 38      |  |  |  |  |  |
| R6        | 18 ch. Du Tour, Laval                                                            | 32      | 29                  | 33        | 44      |  |  |  |  |  |
| R7        | 19 ch. Du Tour, Laval                                                            | 33      | 31                  | 35        | 45      |  |  |  |  |  |

# 5 Impact global et vérification de conformité aux limites sonores applicables

Les résultats présentés pour l'évaluation du bruit extérieur aux points récepteurs sont conditionnels au respect des émissions sonores maximales des équipements, détaillées au Tableau 8, et à la mise en place des mesures de mitigation, détaillées au Tableau 11 et au Tableau 12.

Les résultats des évaluations vis-à-vis des critères applicables sont présentés pour le bruit extérieur et le bruit intérieur respectivement dans le tableau 23 et le tableau 24.

L'impact global aux points récepteurs a été évalué par addition logarithmique des niveaux sonores de toutes les sources de bruit considérées :

- Station Ile Bigras (systèmes CVAC);
- > Stationnement pour automobiles;
- Sous-station de traction (transformateurs de traction, SST115 A/B).

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02



#### 5.1 Bruit extérieur

Les résultats aux points les plus critiques pour l'évaluation du bruit extérieur, qui ont été présentés à la Figure 1, sont comparés au critère applicable pour la période de nuit.



| Tableau 23 – Impact sonore extérieu | ır global (L <sub>A</sub> | <sub>eq, 1h</sub> , dB | A) incluar | nt les rec | ommand | ations |    |  |  |  |  |  |
|-------------------------------------|---------------------------|------------------------|------------|------------|--------|--------|----|--|--|--|--|--|
| Source                              | R1                        | R2                     | R3         | R4         | R5     | R6     | R7 |  |  |  |  |  |
| Période de 0 h à 1 h                |                           |                        |            |            |        |        |    |  |  |  |  |  |
| Station Ile Bigras (CVAC) *         | 39                        | 41                     | 39         | 33         | 35     | 33     | 33 |  |  |  |  |  |
| Stationnement                       | 9                         | 12                     | 6          | 22         | 7      | 28     | 21 |  |  |  |  |  |
| Sous-station électrique SST115      | 25                        | 22                     | 34         | 39         | 35     | 32     | 33 |  |  |  |  |  |
| Limite sonore                       | 45                        | 45                     | 45         | 45         | 45     | 45     | 45 |  |  |  |  |  |
| Contribution de 0 h à 1 h           | 39                        | 41                     | 40         | 40         | 38     | 36     | 36 |  |  |  |  |  |
|                                     | Période                   | de 1 h à               | 5 h        |            |        |        |    |  |  |  |  |  |
| Station Ile Bigras (CVAC) **        | 37                        | 39                     | 29         | 26         | 26     | 33     | 33 |  |  |  |  |  |
| Stationnement                       | 9                         | 12                     | 6          | 22         | 7      | 28     | 21 |  |  |  |  |  |
| Sous-station électrique SST115      | 22                        | 19                     | 31         | 36         | 32     | 29     | 31 |  |  |  |  |  |
| Limite sonore                       | 40                        | 40                     | 40         | 40         | 40     | 40     | 40 |  |  |  |  |  |
| Contribution de 1 h à 5 h           | 37                        | 39                     | 33         | 37         | 33     | 35     | 35 |  |  |  |  |  |
|                                     | Période o                 | le 14 h à              | 15 h       |            |        |        |    |  |  |  |  |  |
| Station Ile Bigras (CVAC) ***       | 39                        | 41                     | 39         | 33         | 35     | 33     | 33 |  |  |  |  |  |
| Stationnement                       | 14                        | 17                     | 11         | 27         | 12     | 33     | 25 |  |  |  |  |  |
| Sous-station électrique SST115      | 26                        | 24                     | 35         | 41         | 36     | 33     | 35 |  |  |  |  |  |
| Limite sonore                       | 55                        | 55                     | 55         | 55         | 55     | 55     | 55 |  |  |  |  |  |
| Contribution de 14 h à 15 h         | 39                        | 41                     | 40         | 42         | 39     | 38     | 37 |  |  |  |  |  |
|                                     | Période d                 | le 16 h à              | 17 h       |            |        |        |    |  |  |  |  |  |
| Station Ile Bigras (CVAC) ****      | 39                        | 41                     | 40         | 33         | 35     | 33     | 33 |  |  |  |  |  |
| Stationnement                       | 14                        | 17                     | 11         | 27         | 12     | 33     | 25 |  |  |  |  |  |
| Sous-station électrique SST115      | 29                        | 26                     | 37         | 54         | 38     | 44     | 45 |  |  |  |  |  |
| Limite sonore                       | 55                        | 55                     | 55         | 55         | 55     | 55     | 55 |  |  |  |  |  |
| Contribution de 16 h à 17 h         | 39                        | 41                     | 42         | 54         | 40     | 45     | 45 |  |  |  |  |  |

#### Notes:

<sup>\* 1</sup> UTA en opération par quai avec 13 000 CFM;

<sup>\*\* 1</sup> UTA en opération par quai avec 10 000 CFM et le système de sonorisation est hors fonction (entre 01 h et 05 h lorsque la station est inoccupée, si conforme aux normes de sécurité applicables);

<sup>\*\*\* 3</sup> UTA en opération par quai avec 20 000 CFM;

<sup>\*\*\*\* 3</sup> UTA en opération par quai avec 22 000 CFM.

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001 02



Selon les résultats du tableau 23, les simulations du niveau sonore provenant du Projet seront conformes aux critères retenus.

#### 5.2 Bruit intérieur

Afin de s'assurer que l'objectif sonore soit respecté, les courbes de débit des UTAs (débit d'air dans le temps) ont été incorporées à l'évaluation pour une journée chaude estivale (voir Annexe B). Ces débits variables ont été combinés aux mesures d'atténuation recommandées dans les sections précédentes sur les systèmes CVAC. Ces données concordent avec les besoins de confort thermique [DR-32].

| Tableau 24 – Évaluation du bruit intérieur dans les espaces publics (dBA) |    |    |     |  |  |  |  |
|---------------------------------------------------------------------------|----|----|-----|--|--|--|--|
| Espace L <sub>Aeq-20h</sub> <sup>1</sup> Critère CVAC Conformité          |    |    |     |  |  |  |  |
| Quais 00-201 / 00-202                                                     | 54 | 63 | Oui |  |  |  |  |
| Passage RC-103                                                            | 58 | 65 | Oui |  |  |  |  |

Note: 1 résultat du profil d'utilisation des UTA tel que spécifié à l'Annexe B

En tenant compte des hypothèses ci-dessus, le niveau sonore moyen sur une période de 20 h généré par les UTA à la porte palière est de 54 dBA. Ainsi, la conception des quais permet de respecter un niveau sonore moyen de 65 dBA. Dans un cas critique, à savoir en période de forte chaleur où les UTA fonctionneraient au débit maximal (3 UTA à 22 000 CFM), le niveau sonore pourrait temporairement atteindre 58 dBA à la première porte palière.

# 6 Isolation vibro-acoustique

Les équipements de ventilation, de plomberie et les transformateurs sont susceptibles de générer des vibrations, et donc du bruit, perceptibles par les usagers. Une isolation de ces équipements doit donc être mise en place afin de limiter leur contribution vibratoire au niveau sonore global de la station.

Les dispositifs antivibratoires ont été sélectionnés à partir de la table 47 du chapitre 48 du guide ASHRAE. Cette table permet de déterminer le type de base, le type d'isolateur et la déflexion statique requise pour constituer des dispositifs antivibratoires efficaces à l'atténuation des vibrations. Les paramètres utilisés pour l'évaluation des dispositifs sont les suivants, si applicables :

- Type d'équipement CVAC;
- > Diamètre du ventilateur;
- > Puissance du ventilateur;
- > Pression statique;
- Vitesse de rotation du ventilateur;
- > Localisation de l'équipement (au sol, en hauteur, etc.)

Toutefois, il faut noter que l'utilisation du guide ASHRAE constitue une approche conservatrice dans le cas du Projet : les espaces considérés ne sont pas des bureaux, fermés ou ouverts, mais des espaces publics. Les recommandations du guide ASHRAE basées sur une isolation visant des vocations commerciales (espaces à bureaux) sont donc en mesure de répondre aux exigences techniques contractuelles.

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02



# 6.1 Dispositifs antivibratoires

Les dispositifs antivibratoires (ou isolateurs) nécessaires pour les divers équipements de la station lle Bigras sont déduits des plans mécaniques et des tableaux des équipements de la station [DR-23] et [DR-29]. Ils sont présentés dans le tableau ci-dessous.

| Tableau 25 – Dis        | Tableau 25 – Dispositifs antivibratoires recommandés |                                                           |                   |                            |  |  |  |  |  |  |  |
|-------------------------|------------------------------------------------------|-----------------------------------------------------------|-------------------|----------------------------|--|--|--|--|--|--|--|
| Type<br>d'équipement    | Nom de<br>l'équipement                               | ID Équipement                                             | Déflexion<br>(po) | Type d'isolateur           |  |  |  |  |  |  |  |
| VCR                     | Ventilo-convecteur                                   | VCR-01 à 04                                               | 0,75              | Ressorts suspendus         |  |  |  |  |  |  |  |
| COND-VCR et<br>COND-UCB | Condenseur                                           | COND-VCR-01 à 04 et<br>COND-UCB-01                        | 0,25              | Coussin élastomère         |  |  |  |  |  |  |  |
| VA et VE                | Ventilateurs<br>d'alimentation et                    | VA-01 à VA-04, VA-06 à 07<br>et<br>VE-01 à 04, VE-06 à 07 | 0,751             | Ressorts suspendus         |  |  |  |  |  |  |  |
|                         | d'évacuation                                         | VA-05 et VE-05                                            | 1,50 <sup>1</sup> | Rails ou bases structurels |  |  |  |  |  |  |  |
| Т                       | Transformateur                                       | TMT-A-1, TMT-B-1, T-N2A-<br>01, T-N2B-01                  | 0,25              | Coussin élastomère         |  |  |  |  |  |  |  |
| РО                      | Pompe                                                | PO-01                                                     | S.O. <sup>2</sup> | S.O. <sup>2</sup>          |  |  |  |  |  |  |  |

#### Notes:

Les isolateurs doivent provenir de l'un des fournisseurs suivants : Kinetics, IAC, Mason Industries, Vibro-Acoustics, Vibro Racan, Vibron Ltée, VMC.

Les recommandations données dans le Tableau 25 constituent une référence pour les isolateurs à utiliser. Tout autre type de dispositif peut être utilisé tant que le fournisseur peut certifier que le dispositif en question fournit la même réduction d'amplitude vibratoire que celle indiquée dans le Tableau 25.

Le fournisseur de ces équipements fournit des isolateurs vibratoires qui doivent être utilisés lorsque possible. Si l'équipement n'est pas fourni avec un isolateur prédéfini, la prescription ci-dessus doit être suivie pour l'achat d'un isolateur ;

Les pompes sont positionnées dans des puisards sous la fondation de la station. Elles ne transmettront donc pas de vibrations à la structure.

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001 02



# 6.2 Raccordement aux équipements

Les connexions aux équipements mentionnés dans le Tableau 25 doivent être flexibles pour éviter la propagation de vibration dans chaque élément s'y connectant. Le tableau ci-dessous indique les types de connexion qui doivent être flexibles.

| Tableau 26 – Raccords flexibles aux équipements |                                         |                                                                    |  |  |  |  |  |  |
|-------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|--|
| Type d'équipement                               | ID Équipement                           | Liste de raccords flexibles                                        |  |  |  |  |  |  |
| VCR                                             | VCR-01 à 04                             | Gaine de ventilation                                               |  |  |  |  |  |  |
| COND-VCR et COND-UCB                            | COND-VCR-01 à 04 et<br>COND-UCB-01      | Alimentation électrique et lignes de réfrigérant gazeux et liquide |  |  |  |  |  |  |
| VA et VE                                        | VA-01 à 06 et VE-01 à 07                | Alimentation électrique et<br>Gaine de ventilation                 |  |  |  |  |  |  |
| Т                                               | TMT-A-1, TMT-B-1, T-N2A-01,<br>T-N2B-01 | Alimentation électrique                                            |  |  |  |  |  |  |

Les mesures à prendre pour ces flexibles sont énumérées ci-dessous :

- > Le type de connecteur flexible doit permettre le mouvement libre de l'équipement dans toute la plage d'amplitude d'opération. Ceux-ci doivent respecter les exigences de résistance au feu et à la chaleur de la norme NFPA 130, Article 12.4.1;
- > Pour l'alimentation électrique, l'ajout d'une longueur supplémentaire permettant au fils électrique souple de former un « U » suffit;
- > Les gaines de ventilation flexibles doivent être installées à l'entrée et à la sortie des équipements mentionnés;
- Les connecteurs de tuyauterie peuvent être des tuyaux de caoutchouc, des joints flexibles sphériques de caoutchouc ou de raccord flexible en acier tissé. Les joints rigides de type collier sont déconseillés. Le raccord doit être installé de manière à former une boucle en « O » entre l'équipement et le tuyau;
- Les tuyaux de circulation de réfrigérant doivent être choisis de manière à permettre le mouvement libre de l'équipement. Ceci peut être réalisé en connectant une section de tuyauterie flexible au circuit de réfrigérant. Une longueur supplémentaire de tuyau flexible doit être prévue pour que les tuyaux forment un « U » entre l'équipement et la section de tuyau rigide. Cette longueur supplémentaire est particulièrement importante pour les ventilo-convecteurs qui sont suspendus au plafond.

Les raccords flexibles doivent provenir de l'un des fournisseurs suivants : Mason Industries, Thermo Tech, Southeastern Hose, Flexonics.

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001 02



#### 6.3 Autres mesures de réduction des vibrations

Cette section apporte des recommandations supplémentaires visant à minimiser les vibrations à l'intérieur de la station.

#### 6.3.1 Vibration causée par l'écoulement

Des isolateurs de type ressort ou coussin doivent être installés sur tout segment du système de ventilation dont la vitesse d'écoulement dépasse 10 m/s ou dont la pression statique est supérieure à 500 Pa. Ces segments du système de ventilation doivent être isolés du reste du système de ventilation par des gaines flexibles.

#### 6.3.2 Base structurale supplémentaire

Tous les ventilateurs et les ventilo-convecteurs de la station doivent être montés sur des rails structuraux ou une structure portante. Les isolateurs prescrits au Tableau 25 doivent être assemblés sur la structure portante. Cette mesure est requise pour assurer le bon fonctionnement des isolateurs. L'épaisseur des membrures formant la structure devrait être au moins égale à 1/10° de la plus grande distance entre les points de fixation de l'équipement. L'épaisseur résultante devrait se trouver entre 100 mm et 300 mm.

#### 7 Conclusion

Le bruit généré par les sources suivantes a été considéré dans cette étude :

- Station Ile Bigras, comprenant :
  - Équipements CVAC ;
  - o Autres équipements mécaniques.
- > Stationnement;
- > Sous-station électrique (transformateurs de traction, SST115 A/B).

Aux points récepteurs externes au site, les niveaux de bruit extérieurs varient entre :



- 36 et 41 dBA de 0 h à 1 h;
- 33 à 39 dBA de 1 h à 5 h;
- 37 à 42 dBA de 14 h à 15 h;
- 39 à 54 dBA de 16 h à 17 h;

Ces niveaux sont conformes à la règlementation applicable en chacun des points récepteurs.

Le bruit entendu dans les espaces intérieurs a également été évalué dans ce rapport. Les recommandations discutées dans la section 0 sont en mesure de respecter une contribution sonore moyenne de 54 dBA sur les quais et de 58 dBA dans les autres espaces publics.

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02

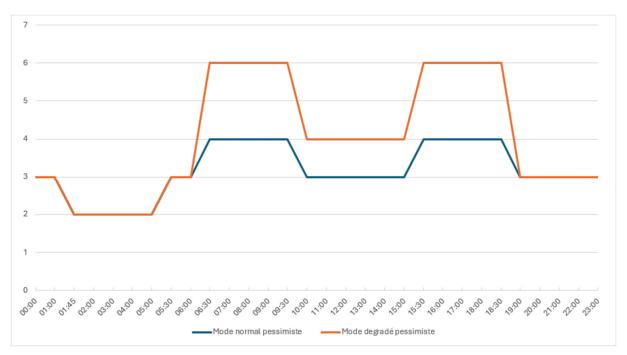


# Annexe A : Requis thermique de la SST115

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02






#### ANNEXE A: Profil de fonctionnement des HVAC pour la SST 115 A/B

Voici ce qui a été considéré pour le nombre d'Unités de Climatisation (UC) en opération en été.

Unités de Climatisation :

- 1. UC-01 ASSC *Toujours en fonctionnement* 7kW (2 tons)
- 2. UC-02 21kW (6 tons)
- 3. UC-03 21kW (6 tons)
- 4. UC-04 21kW (6 tons)
- 5. UC-05 21kW (6 tons)
- 6. UC-06 21kW (6 tons)

Graphique montrant le nombre d'unités en fonction des heures durant une journée chaude d'été. Le UC-01 est toujours en marche et il est inclus dans le nombre de systèmes. Une des 5 UC de 6 tonnes est aussi toujours en marche.



PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02



# Annexe B : Débit d'air des UTA VS niveau sonore

PROJET REM S.E.C. | Étude acoustique de la station lle Bigras 602024-123922-80070-4EEE-0001\_02



Tableau 27 – Profil d'opération des UTA - station lle Bigras - 6 août 2019

| Année    | Mois | Journée | Heure | Température<br>Extérieur ( C) | Temp.<br>Ressenti | CFM<br>Requis | Qté<br>des<br>UTA | CFM<br>par<br>unité | dBA |
|----------|------|---------|-------|-------------------------------|-------------------|---------------|-------------------|---------------------|-----|
| 2019     | 8    | 6       | 00:00 | 20,9                          | 22,1              | 12477         | 1                 | 12477               | 50  |
| 2019     | 8    | 6       | 01:00 | 21,0                          | 22,2              | 0             | 0                 | 0                   | N/A |
| 2019     | 8    | 6       | 02:00 | 19,5                          | 20,7              | 0             | 0                 | 0                   | N/A |
| 2019     | 8    | 6       | 03:00 | 19,3                          | 20,5              | 0             | 0                 | 0                   | N/A |
| 2019     | 8    | 6       | 04:00 | 18,0                          | 19,2              | 0             | 0                 | 0                   | N/A |
| 2019     | 8    | 6       | 05:00 | 17,4                          | 18,6              | 0             | 1                 | 10000               | 49  |
| 2019     | 8    | 6       | 06:00 | 19,4                          | 22,7              | 10000         | 1                 | 10000               | 49  |
| 2019     | 8    | 6       | 07:00 | 21,3                          | 26,1              | 13349         | 1                 | 13349               | 50  |
| 2019     | 8    | 6       | 08:00 | 23,1                          | 28,7              | 18091         | 1                 | 18091               | 52  |
| 2019     | 8    | 6       | 09:00 | 24,8                          | 30,8              | 24108         | 2                 | 12054               | 53  |
| 2019     | 8    | 6       | 10:00 | 26,3                          | 32,5              | 31060         | 2                 | 15530               | 52  |
| 2019     | 8    | 6       | 11:00 | 27,6                          | 33,9              | 38686         | 2                 | 19343               | 55  |
| 2019     | 8    | 6       | 12:00 | 28,8                          | 35,0              | 47378         | 3                 | 15793               | 54  |
| 2019     | 8    | 6       | 13:00 | 29,2                          | 35,4              | 50690         | 3                 | 16897               | 55  |
| 2019     | 8    | 6       | 14:00 | 30,3                          | 36,5              | 61039         | 3                 | 20346               | 56  |
| 2019     | 8    | 6       | 15:00 | 29,8                          | 35,8              | 56096         | 3                 | 18699               | 56  |
| 2019     | 8    | 6       | 16:00 | 30,8                          | 36,4              | 66417         | 3                 | 22139               | 58  |
| 2019     | 8    | 6       | 17:00 | 27,7                          | 32,5              | 39345         | 2                 | 19673               | 55  |
| 2019     | 8    | 6       | 18:00 | 24,6                          | 28,0              | 23308         | 2                 | 11654               | 53  |
| 2019     | 8    | 6       | 19:00 | 23,0                          | 24,3              | 17788         | 1                 | 17788               | 51  |
| 2019     | 8    | 6       | 20:00 | 22,8                          | 24,0              | 17197         | 1                 | 17197               | 51  |
| 2019     | 8    | 6       | 21:00 | 22,9                          | 24,1              | 17490         | 1                 | 17490               | 51  |
| 2019     | 8    | 6       | 22:00 | 23,0                          | 24,2              | 17788         | 1                 | 17788               | 51  |
| 2019     | 8    | 6       | 23:00 | 23,0                          | 24,2              | 17788         | 1                 | 17788               | 51  |
| LAeq-20h |      |         |       |                               |                   |               | 54                |                     |     |